Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators

نویسندگان

چکیده

This paper focuses on the approximate controllability of Hilfer fractional neutral Volterra integro-differential inclusions via almost sectorial operators. Almost operators, differential, Leray-Schauder fixed point theorem and multivalued maps are used to prove result. We start by emphasizing existence a mild solution demonstrate system. In addition, an example is presented principle.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate controllability of fractional differential equations via resolvent operators

where D is the Caputo fractional derivative of order α with  < α < , A :D(A)⊂ X → X is the infinitesimal generator of a resolvent Sα(t), t ≥ , B : U → X is a bounded linear operator, u ∈ L([,b],U), X and U are two real Hilbert spaces, J–α t h denotes the  – α order fractional integral of h ∈ L([,b],X). The controllability problem has attracted a lot of mathematicians and engineers’ att...

متن کامل

Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces

This paper investigates existence of PC-mild solutions of impulsive fractional differential inclusions with nonlocal conditions when the linear part is a fractional sectorial operators like in Bajlekova (2001) [1] on Banach spaces. We derive two existence results of PC-mild solutions when the values of the semilinear term F is convex as well as another existence result when its values are nonco...

متن کامل

Nonlocal Controllability of Mixed Volterra-fredholm Type Fractional Semilinear Integro-differential Inclusions in Banach Spaces

In this paper, we establish a sufficient conditions for the nonlocal controllability of mixed VolterraFredholm type fractional semilinear integro-differential inclusions in Banach spaces. The results are obtained by using fractional calculus, operator semigroups and Bohnenblust-Karlin’s fixed point theorem. Finally, an example is given to illustrate the theoretical results.

متن کامل

Approximate Controllability of Impulsive Fractional Partial Neutral Quasilinear Functional Differential Inclusions with Infinite Delay in Hilbert Spaces

In this paper, we consider the controllability problems for a class of impulsive fractional partial neutral quasilinear functional differential inclusions with infinite delay and (α, x)-resolvent family. In particular, a set of sufficient conditions are derived for the approximate controllability of nonlinear impulsive fractional dynamical systems by assuming the associated linear system is app...

متن کامل

Exact controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces

In this manuscript, we have a tendency to execute Banach contraction fixed point theorem combined with resolvent operator to analyze the exact controllability results for fractional neutral integrodifferential systems (FNIDS) with state-dependent delay (SDD) in Banach spaces. An illustration is additionally offered to exhibit the achieved hypotheses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2022

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract6100607